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Abstract. We present explicit polynomials of two-knot invariants obtained fromq-deformed
algebras. Braid-group representations can be obtained from theR-matrices which in turn arise
in q-deformed algebras. A Markov trace can be defined forR-matrices based on representations
of the q-deformed algebrassu(n)q and hence knot polynomials can be defined. In this
paper, the properties of coupling coefficients andR-matrices based on each of the{1} and {2}
representations forsu(n)q are used to calculate polynomials for knots of ten or fewer crossings.
We develop a new method to calculate the{2}su(n)q polynomials.

For the{1} representation ofsu(n)q , there are five pairs of knots of ten or fewer crossings
which have the same polynomial. The exception is wheren = 2. In this case the polynomial
is equivalent to the Jones polynomial and has 14 pairs for knots of ten or fewer crossings. The
{2}su(n)q polynomial has four pairs for these knots, each pair is different to the{1}su(n)q pairs.
Thus, the{2}su(n)q polynomial has slightly fewer pairs than the{1}su(n)q polynomial and is
significantly better at predicting the amphichirality or non-amphichirality of knots.

1. Introduction

The 1980s saw new developments in both knot theory and statistical mechanics. Given two
knots or links, it is in general hard to tell whether they are topologically equivalent or not.
Alexander [1] associated with each knot a polynomial invariant which distinguished some
but not all. It was not until 1985 that Vaughan Jones discovered an improved polynomial [2].
This polynomial also indicated amphichirality or non-amphichirality, i.e. whether a knot is
equivalent to its mirror image or not. However, the Jones polynomial does not distinguish
all knots nor are all knots with symmetric Jones polynomials amphichiral. Since 1985,
further improvements have been found by extending the Jones polynomial [3, 4]. These
polynomials are mostly obtained by using braids to represent knots or links. In section 2,
we outline the properties of knots and their braid representations.

The search for solutions to the Yang–Baxter equation in statistical mechanics led to
the development ofq-deformations of Lie algebras and other algebras [5–7]. Yang–Baxter
equations without a spectral parameter have solutions,R-matrices, which may be found
from representations ofq-deformed algebras [8–10].

These topics in mathematics and physics were brought together with the realization
that the multiplication rule of braid groups was equivalent to the Yang–Baxter equation
without a spectral parameter [11]. New representations of braid groups were obtained from
R-matrices. Markov traces can be defined on such representations leading to new knot and
link polynomials [11–13]. The Markov trace and knot polynomial for braid representations
obtained fromR-matrices of theq-deformed algebrassu(n)q are given in section 3.

Skein relations for invariants based onsu(n)q representations are known [14] but very
few explicit calculations of polynomials have been done. In this paper we calculate explicit
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polynomials based on the{1} and {2} representations ofsu(n)q for knots of ten or fewer
crossings. We discuss the properties of these polynomials.

Figure 1. Closure of a braid to form a knot link.

The polynomial obtained from the fundamental representation{1} of su(2)q is equivalent
to the Jones polynomial. For anyn, the polynomial based on{1} of su(n)q is a particular
case of the two-variable HOMFLY polynomial, an extension of the Jones polynomial. In
this paper, we calculate explicit{1}su(n)q knot polynomials using the Alexander–Conway
skein relation as a recursion relation. The properties of these polynomials are discussed in
section 5.

For representations other than the fundamental, the skein relation is insufficient to
calculatesu(n)q polynomials. In section 4, we introduce a method for finding new skein-
type relations. The properties of coupling coefficients andR-matrices are used to simplify
the matrix representation of a braid. These relations, together with the Alexander–Conway
skein relation, are used to calculate{2}su(n)q polynomials as described in section 6. The
properties of the polynomials are discussed. The{1}su(n)q and {2}su(n)q polynomials for
selected knots are given.

2. Knots and braids

Knots are smooth non-selfintersecting curves inS3. A knot invariant associates with each
knot a more or less unique polynomial. One approach to find knot polynomials is through
braids. Anm-braid is a set ofm strings between two parallel sets ofm points arranged
horizontally, as illustrated on the left-hand side of figure 1. The set ofm-braids form a
group,Bm, with concatenation as the group operation. Anm-braid is generated by the set
of single twistsbi andb−1

i for 1 6 i 6 m − 1 as shown in figures 2(a) and 2(b).

Figure 2. Braids and their generators.

An equivalent description of the braid groupBm [15] is that its generators satisfy the
following relations

bibj = bjbi |i − j | > 2 (1)
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bibi+1bi = bi+1bibi+1. (2)

Given a braid, its closure is found by connecting the corresponding points at top and
bottom, as shown in figure 1. It is clear that the closure of a braid gives a knot or link.
The description of knots by closed braids is highly non-unique. However, Markov [16]
establishes that if two braidsA′ and A′′ are obtained from the braidA ∈ Bm by the
moves given below, then the knots formed by the closure of the braidsA, A′, andA′′ are
topologically equivalent

Markov I A′ = BAB−1 for an arbitrary braidB ∈ Bm (3)

Markov II A′′ = Ab±1
m for bm, b−1

m ∈ Bm+1. (4)

These properties enable a knot polynomial to be found from the braid-group description of
a knot. A knot polynomialα(A) obtained from some braid-group description,A, satisfying
α(A) = α(A′) = α(A′′), for A′, A′′ as given in (3) and (4) is independent of the braid-group
description used, depending only on the knot.

If a Markov traceφ on matrix representationsA, B of braidsA, B can be defined so
that it satisfies

φ(A) = φ(BAB −1
) (5)

φ(Abm) = τφ(A) φ(Ab−1
m ) = τφ(A) for A ∈ Bm, bm, b−1

m ∈ Bm+1 (6)

for τ and τ such thatτ = φ(bi ) and τ = φ(b−1
i ) for all i, then a knot polynomial can

easily be obtained. The knot polynomial for the knot formed by the closure of the braidA

is then

α(A) = (ττ )−(m−1)/2

(
τ

τ

)e(A)/2

φ(A) (7)

whereA ∈ Bm and e(A) is the sum of the exponents of the generatorsbi in A [11]. It is
easily shown to be invariant under the Markov moves, equations (3) and (4).

3. R-matrices and su(n)q knot polynomials

Theq-deformed algebrassu(n)q have a similar representation structure to the non-deformed
algebras. Vector coupling coefficients can be defined forsu(n)q in a similar way tosu(n)

but these coefficients are dependent on the parameterq. In the limit asq → 1, thesu(n)q
algebra reduces tosu(n). R-matrices describe the symmetry of the coupling coefficients
when the coupling representations are interchanged [13].

(Rµν)
m1m2

m′
1m

′
2
〈µm1νm2|rλm〉 = {µνλ∗r}q{c(µ)+c(ν)−c(λ)}/2〈νm′

2µm′
1|rλm〉 (8)

wherec(λ) is the quadratic Casimir operator acting onλ and{µνλ∗r} is a phase.
The R-matrices satisfy the Yang–Baxter equation without spectral parameter [13, 17].

We can represent theR-matrix Rλµ in diagrammatic form as [13, 17]. The Yang–Baxter

equation can be given diagrammatically as

(9)
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Whenλ = µ = ν, Akutsu and Wadati [11] recognized that the Yang–Baxter equation
is equivalent to the braid-group equation (2). A matrix representation,bi , for a generator
bi of the braid groupBn can thus be defined by

bi = 1 × · · · ×
i i+1︷︸︸︷
Rλλ × · · · × 1︸ ︷︷ ︸

n

(10)

with (1) being satisfied trivially and (2) following from the Yang–Baxter equation.
A Markov trace can be obtained for the braid-group representation obtained from a

representationλ of the q-deformed algebrasu(n)q . We first define an enhancement matrix
V by

V = vλ × · · · × vλ︸ ︷︷ ︸
n

vλ = diag{qρ(3)|3 a weight ofλ} (11)

whereρ = 1
2

∑
α Hα, α a positive root ofsu(n), and the braid group under consideration

has dimensionn.
The R-matrix Rλλ and the matrixvλ satisfy the following relations

Rλλ(vλ × vλ) = (vλ × vλ)R
λλ (12)

tr2((1 × vλ)R
λλ) = q−c(λ)1 (13)

tr(vλ) = |λ|. (14)

Equation (14) defines theq-dimension|λ| of the representationλ. The trace in (13) is over
the second space. Proofs for (12) and (13) are given in Reshetikhin [13] and Zhanget al
[18].

The modified trace defined below is a Markov trace

φ(A) = 1

|λ|m tr(VA) τ = q−c(λ)

|λ| τ = qc(λ)

|λ| (15)

with (5) following from (12) and (6) following from (13). The knot polynomial for the
braid A ∈ Bn from (7) and (15) is thus

α(A) = |λ|−1qe(A)c(λ)tr(VA). (16)

The polynomial is normalized so that for the unknot (trivial knot or circle)α(bi) = α(1) =
α(b−1

i ) = 1 where 1 is the trivial (and only) braid inB1.
From (8), theR-matricesRλλ have eigenvaluesq2c(λ)−c(µ)/2, whereµ ⊂ λ × λ. Thus

Rλλ
q satisfies ∏

µ⊂λ×λ

((Rλλ)r − {λλµ∗}rqr(2c(λ)−c(µ))/2) = 0 (17)

wherer is the multiplicity of µ in λ × λ. This leads to a relation of the form below for
knot polynomials based onR-matrices for arbitrary braidsA, B

α(Ab k
i B) = hk−1α(Ab k−1

i B) + · · · + h1α(Ab iB) + h0α(AB). (18)

Such relations are called Alexander–Conway skein relations. Skein relations are used in the
following sections as recursion relations.
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4. Skein-type relations

In principle, polynomials for knots based on any representation ofsu(n)q can be obtained
from (16). However, for all but the simplest knots, the matrix multiplications are long and
tedious. The skein relation is sufficient to calculate all polynomials for the fundamental
representation ofsu(n)q by recursion. For other representations the skein relation is not
sufficient for complete calculation but can be used in simplification.

Guadagnini [19] outlines a new method for calculatingsu(n)q knot polynomials. The
knot polynomial for a particular representation is reduced to a sum over polynomials for
trivial knots based on other representations. The properties of Wilson line operators are
used in the simplification process.

In this section, we use a similar approach to Guadagnini, but with two major differences.
First, the properties ofR-matrices and vector coupling coefficients are used. These arise
naturally in the deformed algebra. Secondly, rather than tackling each knot individually,
we derive two ‘skein-type’ relations which can be used to calculate polynomials for whole
classes of braids.

In addition to the Yang–Baxter equation, there are further relations for theR-matrices
and coupling coefficients as summarized below, where in a similar manner to theR-matrices

the coupling coefficient〈µν|λ〉 and its conjugate〈λ|µν〉 are given diagrammatically as

and

(Rνµ)
m3m

m′
3m

′′ 〈λm′
1ηm′

2|νm′
3〉 = 〈λm1ηm2|νm3〉(Rηµ)

m2m

m′
2m

′(R
λµ)

m1m
′

m′
1m

′′ (19)

(19′)

(Rµν)
m1m2
k1k2

(Rνµ)
k1k2

k′
2k

′
1
. . . (Rνµ)

k
′′
2 k

′′
1

m′
2m

′
1︸ ︷︷ ︸

2n

=
∑

λ∈µ×ν

qn(c(µ)+c(ν)−c(λ))〈µm1νm2|λm〉〈λm|µm′
1νm′

2〉

(20)

(20′)

(Rµν)
m1m2
k1k2

. . . (Rµν)
k

′′
1 k

′′
2

m′
1m

′
2︸ ︷︷ ︸

2n+1

=
∑

λ∈µ×ν

{
µνλ∗} q(2n+1)(c(µ)+c(ν)−c(λ))/2〈µm1νm2|λm〉〈λm|νm′

1µm′
2〉 (21)

(21′)
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Equation (19) is the pentagonal equation [13, 17, 20]. Equations (20) and (21) follow from
the definition of theR-matrix, (8), and the two vector coupling coefficient orthogonality
relations.

In order to use the above relations in the simplification process, the idea of a braid is
extended. The coloured-braid group associates ‘colours’ with each string. In this case, the
strings are associated with various irreps ofsu(n)q . The crossing of two strings associated
with irrepsλ andµ is generated with theR-matrix Rλµ. The generalR-matrices generate
representations of the coloured-braid group. When all the strings are associated with the
same irrep the previous case is retrieved.

In order for closure to remain sensible, each pair of strings being joined must be
associated with the same representation. For a braid to represent a knot, therefore, all
strings must be associated with a single representation.

For braids with sensible closure, the Markov traceφ generalizes. If the strings
are associated with representationsµ, ν etc thenφµν... = (|µ||ν| . . .)−1tr(Vµν...A) where
Vµν... = vµ × vν × · · ·. From the definition of the Markov trace, taking the closure of a
braid is equivalent to taking a modified trace of the product ofR-matrices representing the
braid. The modified trace can be performed on other matrices, extending the idea of closure.
When it is applied to coupling coefficients, the following relation holds

tr(Vµ〈µν|λ〉〈λ|µν〉) = |λ|
|ν| (22)

(22′)

Equation (22) follows from the definition of the enhancement matrixv and the
orthogonality and symmetries of the coupling coefficients [9].

The two skein-type relations used in the calculation of{2}su(n)q polynomials reduce
a braid of dimension(m + 1) or (m + 2) to a sum over braids of dimensionm. One or
two strings may be eliminated by reducing crossings with (20) and (21), manipulating with
the pentagonal equation (19) and Yang–Baxter equation (9) and finally using the closure
equivalence.

To illustrate this method, the calculation of the skein-type relation, (28), is outlined
below

(23)

The first step uses coupling coefficient orthogonality. The pentagonal equation, (19), is
then repeatedly applied. The final step uses (20) to write the product of twoR-matrices as
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a second sum over coupling coefficients. On closure and using (22) we have

(24)

where in the final step the definitions ofR22 and (R22)−1, (8), and coupling coefficient

orthogonality, are used to give three expressions for the three products. These equations

are rearranged to give the coefficientsf for writing the product in terms of ,

and . Knot polynomials can now be obtained as{2} is the only representation involved.

The polynomialα(Abmbm+1bm) can thus be written as a sum over the polynomialsα(Abm),
α(A) andα(Abm−1). The coefficients are given in table 1. A similar approach is used for
the second skein-type relation, equation (29), with two strings being eliminated.

Table 1. Coefficients for skein-type relations, equations (28) and (29).

h1 −q3n+2 + q2n+4 − 2q2n+3 + q2n+2 + 2q2n+1 − 2q2n + q2n−2

h0 q5n+6 − q4n+8 − q4n+5 + q4n+4 − q4n+2 + 2q3n+8 − 3q3n+7 − 2q3n+6 + 10q3n+5 − 6q3n+4 − 7q3n+3

+10q3n+2 − q3n+1 − 4q3n + 2q3n−1)/(q − 1)2(q + 1)

h−1 q5n+4 − 2q4n+4 + 2q4n+3 + q4n+2 − 2q4n+1

k1 2q10n+10 + (−q12 − q11 − 6q10 + 4q9 + 5q8 − 5q7 − 2q6)q9n + (4q12 − 6q10 + 6q9 − 4q7 + 8q6

−6q4 + 2q3 + 2q2)q8n + (−q13 + q12 − q11 + q10 − q9 + 2q7 − 5q6 + q5 + 4q4 − 2q3 − q2 − q + 1
+q−1 − q−2)q7n/(q − 1)2(q + 1)

k0 q10n+12 + (−2q14 − 2q11 + 2q10 − 2q8)q9n + (q16 + 5q14 − 6q13 − 9q12 + 28q11 − 7q10 − 28q9 + 23q8

+8q7 − 13q6 + 2q5 + 2q4)q8n + (−4q16 + 4q15 + 10q14 − 22q13 − 2q12 + 30q11 − 20q10

−6q9 + 20q8 − 24q7 + 26q5 − 12q4 − 12q3 + 8q2 + 2q − 2)q7n + (q17 − 2q16 + 4q14 − q13 − 5q12

−2q11 + 17q10 − 10q9 − 19q8 + 30q7 − 5q6 − 20q5 + 16q4 − 2q3 + q − 7 + 6q−1 + q−2 − 3q−3 + q−4)

×q6n/(q − 1)4(q + 1)2

k−1 −2q8n+8 + (4q10 − 4q9 + q8 + 7q7 − 4q6 − 2q5 + 3q4 + q3)q7n + (−2q12 + 2q11 + 2q10 − 6q9

+4q5 − 2q4 − 6q3 + 4q − 2q−1)q6n + (q13 − 2q12 + 3q10 + q9 − 5q8 + q7 + 5q6 − 5q5 + 2q4 + 4q3

−5q2 + q + 3q−2 − 2q−3 − q−4 + q−5)q5n/(q − 1)2(q + 1)

5. Knot polynomials based on the fundamental representation ofsu(n)q

The fundamental representation ofsu(n)q can be written in partition form as{1, 0, . . . , 0}
and is m-dimensional. In the following sections, it is written as{1}su(n)q . The tensor
product of the fundamental representation with itself decomposes into two terms, the
symmetric term{2} and the antisymmetric term{1 1}. Using (7), (15), and (17), one obtains
a two-term skein relation for the{1}su(n)q polynomials as

α(Ab2
i B) = (q(n−1)/2 − q(n+1)/2)α(AbiB) + qnα(AB). (25)
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To calculate the {1}su(n)q polynomial for a knot, the braid representing the
knot is written as a product ofp terms of form b

k1
1 b

k2
2 . . . bkm

n , that is as

b
l11
1 b

l12
2 . . . bl1m

m . . . b
lp1

1 b
lp2

2 . . . b
lpm

n . If the last non-zero power islpi , that is lpi+1 = · · · =
lpm = 0, the polynomial can be written as a sum of polynomials with last non-zero power
in the i − 1 position or lower by means of the skein relation, braid-group relations and
Markov moves. Wheni = 1, by the Markov move, (3), theb

lp1

1 term can be absorbed
with the b

l11
1 term and hence the number of termsp is reduced by 1. The recursion

continues untilp = 1 whenα(b
k1
1 . . . bkm

m ) = Pk1Pk2 . . . Pkm
, wherePk = α(bk). For each

k, Pk is found from iterating the skein relation withA, B the trivial braids and noting that
P1 = α(b1) = P−1 = α(b−1

1 ) = 1.
The knots were sorted according to braid index, i.e. the dimension of the braid

representation of the knot, and number of termsp. The braid words were taken from
[21]. An algebraic package, MAPLE [22], was then used to carry out the above steps.

For n = 1 the polynomials for all knots are equal to 1 and are thus identical. For
higher values ofn, all polynomials are different except for the occasional pair. Forn = 2,
among the 248 knots of ten or fewer crossings, there are 14 pairs of knots having the same
polynomials. Of these 14 pairs, five are pairs of knots which have the same polynomial for
all values ofn. For n > 2, all knots of ten or fewer crossings were distinguished by the
{1}su(n)q polynomial with the exception of these five pairs.

The {1}su(n)q polynomials are a special case of the HOMFLY polynomial [3]. This
two-variable polynomial has the skein relationt−1P(AbiB)−tP (Ab−1

i B) = xP (AB). With
t = qn/2 andx = q−1/2 − q1/2, the skein relation of the{1}su(n)q polynomials is obtained.
The pairs of knots of ten or fewer crossings which cannot be distinguished by the{1}su(n)q
polynomial are exactly those with the same HOMFLY polynomial. For knots of ten or
fewer crossings, the one variable{1}su(n)q polynomials for anyn > 2 distinguish the same
knots as the two variable HOMFLY polynomial.

For special values of the deformation parameterq, the {1}su(n)q polynomials take on
certain discrete values. Ifq(n−1)/2 = 1 or q(n+1)/2 = −1 thenα(A) = 1 for all braidsA, as
is readily shown from the skein relation. Likewise, using induction on the skein relation, we
can show that forq(n−1)/2 = −1 or q(n+1)/2 = −1, the polynomialα(A) equals 1 for braids
A that describe a knot or an odd-component link,α(A) equals−1 for the even-component
case.

These special values mean that for any knot with polynomialα(A), the polynomial
1 − α(A) has factors(q(n+1)/2 − q−(n+1)/2) and (q(n−1)/2 − q−(n−1)/2). This is used to
simplify the knot polynomials. The reduced knot polynomials

1 − α(A)

(q(n+1)/2 − q−(n+1)/2)(q(n−1)/2 − q−(n−1)/2)

for selected knots are given in table 3. Settingn = 2, we recover the table given by Jones
[21] (on replacingq for t).

6. Knot polynomials based on{2} of su(n)q

Knot polynomials based on the non-fundamental representations ofsu(n)q have skein
relations of power,N , greater than 2. The Alexander–Conway skein relation is insufficient
to determine all knot polynomials. Either the braid representations must be entered explictly
into the definition of the knot polynomial, (16), or the skein relation must be supplemented
with other skein-type relations. All of the{2}su(n)q polynomials for knots of ten or fewer
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crossings can be calculated using the Alexander–Conway skein relation together with two
other skein-type relations.

The {2}su(n)q polynomials are of powerN = 3, as there are three terms in the product

{2} × {2} = {4} + {31} + {22}. (26)

From (7), (15) and (17), the{2}su(n)q skein relation is

α(Ab2
i B) = qn(q2 − q + q−1)α(AbiB) + q2n(q3 − q + 1)α(AB) − q3n+2α(Ab−1

i B). (27)

Table 2. Summary of pairs and falsely amphichiral knots.

Invariant Knots which are not distinguished

{1}su(n)q 51–10132, 88–10129, 816–10156, 1025–1056, 1040–10103

{1}su(2)q (additional) 1022–1035, 1041–1094, 1043–1091, 1059–10106, 1060–1083,
1071–10104, 1073–1086, 1081–10109, 10137–10155

{2}su(n)q 31–77, 76–1060, 811–107, 944–1071

Invariant Falsely amphichiral knots

{1}su(n)q 942, 1048, 1071, 1091, 10104, 10125

{2}su(n)q None

The two relations below are needed in addition to calculate{2}su(n)q polynomials for
all knot of ten or fewer crossings where the coefficientsk1, . . . , h−1 are given in table 1.

α(Abnb
2
m−1bm) = h1α(Abm−1) + h0α(A) + h−1α(Ab−1

m−1) whereA ∈ Bm (28)

α(Abmbm−1bm+1b
2
mbm−1bm+1bm) = k1α(Abm−1) + k0α(A) + k−1α(Ab−1

m−1)

whereA ∈ Bm. (29)

The method used in obtaining these relations is outlined in section 4 with (28) used as an
illustration.

The {2}su(n)q knot polynomials are calculated in a similar manner to the{1}su(n)q
polynomials. The skein relation, (27), is used to reduce the knot polynomial to a sum over
simpler knot polynomials with the two skein-type relations, (28) and (29), being used when
no other simplification is possible.

The {2}su(n)q polynomial can be factored in a similar manner to the{1}su(n)

polynomials. For any braidA, it follows from the skein relation, (27), and the two skein-
type relations, (28) and (29), thatα(A) = 1 for qn+2 = 1 or qn−1 = 1. Thus any knot with
polynomialα(A) has factors(q(n+2)/2 − q−(n+2)/2)(q(n−1)/2 − q−(n−1)/2) for 1− α(A). This
provides a check on the calculation of the polynomials.

Hou et al [17] show that the{2}su(2)q polynomial is equivalent to the polynomial
of Akutsu and Wadati [23] found from a three-state exactly solvable model in statistical
mechanics. The knot polynomials calculated here for knots with braid index 2 or 3 were
compared forn = 2 to those of Akutsu and Wadati [23]. The values given by Akutsu
and Wadati forα(10100) and α(10112) have incorrect factors for 1− α(A). These two
polynomials are among those given in table 3.

The {2}su(n)q polynomial distinguishes all of the pairs of knots of the{1}su(n)q
polynomials for knots of ten or fewer crossings, both the five pairs for alln and the nine
further pairs only forn = 2. However, the{2}su(n)q polynomial has four pairs for knots
of ten or fewer crossings. They are: 31 and 77, 76 and 1060, 811 and 107, 944 and 1071.
These polynomials are given in table 3.
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Table 3. {1}su(n)q and {2}su(n)q polynomials. The table gives for selected knots of ten or fewer crossings their braid index (BI), reduced{1}su(n)q polynomial and reduced
{2}su(n)q polynomial, together with notes on these. The knots given are those mentioned elsewhere in the paper, that is, those which are part of a pair or have polynomials of
interest. The reduced{1}su(n)q polynomials given are(1−α(A))/(q(n+1)/2 − q−(n+1)/2)(q(n−1)/2 − q−(n−1)/2), whereα(A) is the{1}su(n)q polynomial for the knotA. The terms
in brackets are coefficients of 1, q±1, q±2, . . ., the overlined terms being negative coefficients. For example, the reduced{1}su(n)q polynomial for 77 is −qn − 2 + q + q−1. In a
similar manner, the reduced{2}su(n)q polynomials given are(1− α(A))/(q(n+2)/2 − q−(n+2)/2)(q(n−1)/2 − q−(n−1)/2). The terms in brackets are coefficients of 1, q, q2 . . . (notice

the difference to the reduced{1}su(n)q polynomials). The reduced{2}su(n)q polynomial for 77 is thusq
n+ 1

2 + q
2n− 1

2 + q
2n+ 5

2 − q
3n+ 5

2 .

Knot BI {1}su(n)q polynomial Comments

{2}su(n)q polynomial Comments

31 2 qn(1)

qn+ 1
2 (1) + q2n− 1

2 (1001) + q3n+ 5
2 (1̄) Same as 77

51 2 qn(1) + q2n(01) Same as 10132, all n

qn+ 1
2 (1) + q2n− 1

2 (1001) + q3n− 3
2 (1001001) + q4n− 5

2 (1001001001) + q5n+ 1
2 (1̄00̄11̄01̄)

76 4 qn(21̄) + q2n(1)

qn− 7
2 (1̄11̄211̄1) + q2n− 7

2 (12̄1̄62̄4̄50̄21) + q3n− 3
2 (1̄1̄40̄522̄2) + q4n+ 3

2 (202̄11) + q5n+ 9
2 (1̄) Same as 1060

77 4 (2̄1) + qn(1̄)

qn+ 1
2 (1) + q2n− 1

2 (1001) + q3n+ 5
2 (1̄) Same as 31

88 4 (1̄1) + qn(1̄1) Same as 10129, all n

q−n− 9
2 (1̄11̄201̄1) + q− 7

2 (1̄22̄404̄11̄1) + qn− 9
2 (102̄42̄625̄21̄1) + q2n− 5

2 (12̄04̄42̄51̄2̄1) + q3n+ 1
2 (1̄10̄211̄1)

811 4 qn(21̄) + q2n(11̄)

qn− 7
2 (1̄11̄211̄1) + q2n− 5

2 (3̄06̄44̄51̄2̄1) + q3n− 7
2 (104̄17̄46̄50̄21) + q4n− 3

2 (12̄1̄61̄5̄41̄21) + q5n+ 3
2 (1̄11̄201̄1) Same as 107

816 3 qn(32̄1) Same as 10156, all n

qn− 13
2 (1̄22̄516̄51̄53̄1̄21̄) + q2n− 13

2 (12̄1̄75̄9̄14114103̄851̄21) + q3n− 7
2 (1̄21̄637̄91̄74̄1̄21̄)

942 4 (01̄) Falsely amphichiral

q−n− 11
2 (1̄00̄11̄01̄) + q− 11

2 (1001100001) + qn− 5
2 (1̄1̄01̄21̄) + q2n+ 3

2 (101̄)
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Table 3. (Continued)

Knot BI {1}su(n)q polynomial Comments

{2}su(n)q polynomial Comments

944 4 (1̄) + qn(1̄1)

q−n− 3
2 (1̄) + q− 7

2 (110̄101) + qn− 7
2 (1̄1̄32̄4̄21̄2) + q2n− 5

2 (11̄13̄304̄11̄1) + q3n+ 1
2 (1̄10̄211̄1) Same as 1071

107 5 qn(21̄) + q2n(21̄) + q3n(11̄)

qn− 7
2 (1̄11̄211̄1) + q2n− 5

2 (3̄06̄44̄51̄2̄1) + q3n− 7
2 (104̄17̄46̄50̄21) + q4n− 3

2 (12̄1̄61̄5̄41̄21) + q5n+ 3
2 (1̄11̄201̄1) Same as 811

1022 4 (2̄11̄) + qn(2̄11̄) Same as 1035, n = 2

q−n− 15
2 (1̄10̄312̄402̄201̄1) + q− 13

2 (1̄10̄433̄806̄42̄31̄1̄1) + qn− 15
2 (102̄31̄6741249̄72̄51̄1̄1) + q2n− 11

2 (12̄04̄508̄83̄10̄45̄50̄21)

+q3n− 5
2 (1̄10̄220̄421̄301̄1)

1025 4 qn(1) + q2n(2̄21̄) + q3n(3̄21̄) Same as 1056, all n

qn+ 1
2 (1) + q2n− 1

2 (1001) + q3n− 11
2 (1̄11̄313̄302̄201̄1) + q4n− 9

2 (3̄17̄86̄13̄41010̄17̄50̄21) + q5n− 11
2 (105̄312121122̄2181431262̄31)

+q6n− 7
2 (13̄1̄11̄615195211181243̄31) + q7n− 1

2 (1̄21̄636̄806̄41̄21̄)

1035 6 q−n(1̄) + (3̄1) + qn(3̄1) + q2n(1̄) Same as 1022, n = 2

q−3n− 7
2 (1̄) + q−2n− 9

2 (113̄1̄2) + q−n− 9
2 (1̄32̄82̄50̄1) + q− 9

2 (1̄1̄63143̄11̄13̄1) + qn− 9
2 (12̄3̄11319013̄23̄1) + q2n− 3

2 (3̄48147̄130̄41)

+q3n− 1
2 (1̄15̄47̄53̄2) + q4n+ 5

2 (21̄3̄11) + q5n+ 11
2 (1̄)

1040 4 qn(42̄1) + q2n(32̄1) Same as 10103, all n

qn− 13
2 (1̄21̄636̄816̄41̄21̄) + q2n− 11

2 (2̄4515224171123̄59̄80̄21) + q3n− 13
2 (104̄6820032192128̄21491̄31) + q4n− 9

2 (13̄09119̄25̄7232041462̄31)

+q5n− 3
2 (1̄20̄553̄935̄502̄1)

1041 5 (11̄) + qn(43̄1) + q2n(11̄) Same as 1094, n = 2

q−n− 11
2 (1̄11̄201̄1) + q− 13

2 (115̄09̄56̄71̄3̄2) + qn− 13
2 (2̄35125̄20̄417113̄831̄1) + q2n− 13

2 (13̄11213163043014101453̄31)

+q3n− 9
2 (1̄06̄613179234121004̄2) + q4n− 3

2 (22̄4̄73̄824̄301) + q5n+ 3
2 (1̄11̄201̄1)
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Table 3. (Continued)

Knot BI {1}su(n)q polynomial Comments

{2}su(n)q polynomial Comments

1043 5 qn(1̄1) + (4̄31̄) + q−n(1̄1) Same as 1091, n = 2

q−3n− 13
2 (1̄11̄201̄1) + q−2n− 15

2 (104̄36̄72̄72̄2̄2) + q−n− 15
2 (2̄4214718207̄19̄57̄50̄1) + q− 15

2 (13̄29171̄33222233̄11792̄31)

+qn− 11
2 (1̄05̄75̄19̄7201871424̄2) + q2n− 5

2 (22̄2̄72̄7̄63̄401) + q3n+ 1
2 (1̄10̄211̄1)

1048 3 (2̄31̄1) Falsely amphichiral

q−n− 21
2 (1̄11̄3̄30̄834̄91̄46̄01̄301̄1) + q− 21

2 (11̄14̄3210̄6019̄56̄180̄590̄240̄11) + qn− 15
2 (1̄11̄3̄21̄7̄40̄933̄712̄301̄1)

1056 4 qn(1) + q2n(2̄21̄) + q3n(3̄21̄) Same as 1025, all n

qn+ 1
2 (1) + q2n− 1

2 (1001) + q3n− 11
2 (1̄11̄313̄302̄201̄1) + q4n− 9

2 (3̄16̄85̄12̄49̄91̄6̄50̄21) + q5n− 11
2 (105̄412131023̄3181421161̄31)

+q6n− 7
2 (13̄1̄11̄616197221091243̄31) + q7n− 1

2 (1̄21̄627̄72̄63̄1̄21̄)

1059 5 (11̄) + qn(53̄1) + q2n(11̄) Same as 10106, n = 2

q−n− 11
2 (1̄11̄201̄1) + q− 13

2 (115̄19̄65̄81̄3̄2) + qn− 13
2 (2̄35144̄23̄9181521031̄1) + q2n− 13

2 (13̄11314183743720141754̄31)

+q3n− 9
2 (1̄06̄615181229216112̄42̄) + q4n− 3

2 (22̄4̄74̄815̄201) + q5n+ 3
2 (1̄11̄201̄1)

1060 5 (5̄31̄) + qn(3̄2) + q2n(1̄) Same as 1083, n = 2

qn− 7
2 (1̄11̄211̄1) + q2n− 7

2 (12̄1̄62̄4̄50̄21) + q3n− 3
2 (1̄1̄40̄522̄2) + q4n+ 3

2 (202̄11) + q5n+ 9
2 (1̄) Same as 76

1071 5 q−n(1̄1) + (5̄31̄) + qn(1̄1) Same as 10104, n = 2
falsely amphichiral

q−n− 3
2 (1̄) + q− 7

2 (110̄101) + qn− 7
2 (1̄1̄32̄4̄21̄2) + q2n− 5

2 (11̄13̄304̄11̄1) + q3n+ 1
2 (1̄10̄211̄1) Same as 944

1073 5 qn(53̄1) + q2n(32̄) + q3n(1) Same as 1086, n = 2

qn− 13
2 (1̄30̄98815310̄71̄31̄) + q2n− 13

2 (13̄3821237282137̄617111̄31) + q3n− 9
2 (2̄27194̄4019373482355̄3) + q4n− 5

2 (149̄3̄27̄72620111213)

+q5n+ 1
2 (3̄2̄93̄1355̄51̄) + q6n+ 7

2 (303̄22) + q7n+ 13
2 (1̄)
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Table 3. (Continued)

Knot BI {1}su(n)q polynomial Comments

{2}su(n)q polynomial Comments

1081 5 q−n(1̄1) + (5̄41̄) + qn(1̄1) Same as 10109, n = 2

q−3n− 13
2 (1̄11̄201̄1) + q−2n− 15

2 (11̄5̄56101̄83̄2̄2) + q−n− 15
2 (2̄62201425336̄29109̄70̄1) + q− 15

2 (14̄313262̄51343451̄226133̄41)

+qn− 11
2 (1̄07̄91029̄63325142026̄2) + q2n− 5

2 (22̄3̄81̄1065̄51̄1) + q3n+ 1
2 (1̄10̄211̄1)

1083 4 (4̄31̄) + qn(3̄21̄) Same as 1060, n = 2

q−n− 15
2 (1̄31̄8̄1141779̄903̄1) + q− 13

2 (2̄4116161736331171012̄13̄1) + qn− 15
2 (11̄4̄82231724422̄371614120̄31)

+q2n− 11
2 (13̄19142̄28211731̄41692̄31) + q3n− 5

2 (1̄20̄5621055̄602̄1)

1091 3 (4̄42̄1) Same as 1043, n = 2
falsely amphichiral

q−n− 21
2 (1̄21̄5̄81161111214131316̄502̄1) + q− 21

2 (12̄16̄9119207̄39212238̄71918̄18̄60̄21) + qn− 15
2 (1̄21̄5̄70141352110111527̄502̄1)

1094 3 qn(44̄21̄) Same as 1041, n = 2

q−3n− 23
2 (1̄21̄4̄73̄1016̄3181651656̄602̄1) + q−2n− 23

2 (12̄15̄93132182232432231023̄58̄70̄21) + q−n− 17
2 (1̄21̄4̄73̄8̄12̄5121401575− 702̄1)

10100 3 qn(1) + q2n(3̄42̄1)

qn+ 1
2 (1) + q2n− 1

2 (1001) + q3n− 17
2 (1̄22̄619̄74̄11̄36̄82̄4̄52̄2̄21̄) + q4n− 17

2 (12̄1̄85̄12185241216205141468̄842̄21)

+q5n− 11
2 (1̄21̄7310126̄15̄51210̄36̄63̄2̄21̄) Different to ADW for n = 2

10103 4 qn(42̄1) + q2n(32̄1) Same as 1040, all n

qn− 13
2 (1̄21̄636̄816̄41̄21̄) + q2n− 11

2 (1̄4313321151020̄48̄70̄21) + q3n− 13
2 (11̄4̄8622332211927̄31180̄21)

+q4n− 9
2 (13̄010111227̄4272061562̄31) + q5n− 3

2 (1̄21̄637̄91̄74̄1̄21̄)

10104 3 (5̄42̄1) Same as 1071, n = 2
falsely amphichiral

q−n− 21
2 (1̄21̄5̄91181413266161517̄502̄1) + q− 21

2 (12̄1610121249̄46272845̄92320̄19̄60̄21) + qn− 15
2 (1̄21̄5̄80161672612141728̄502̄1)
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Table 3. (Continued)

Knot BI {1}su(n)q polynomial Comments

{2}su(n)q polynomial Comments

10106 3 qn(54̄21̄) Same as 1059, n = 2

q−3n− 23
2 (1̄21̄4̄84̄1120̄4222061867̄602̄1) + q−2n− 23

2 (12̄151041426102740438281225̄69̄70̄21) + q−n− 17
2 (1̄21̄4̄84̄9̄16̄5151811786̄702̄1)

10109 3 (5̄52̄1) Same as 1081, n = 2

q−n− 21
2 (1̄21̄6̄101231815348202109̄61̄21̄) + q− 21

2 (12̄171112729106033336010292711171̄21) + qn− 15
2 (1̄21̄6̄902120834151823110̄61̄21̄)

10112 3 qn(64̄31̄)

qn− 19
2 (1̄301091122124187̄20115̄11̄61̄31̄) + q2n− 19

2 (13̄010138̄341536487493414321951471̄31)

+q3n− 13
2 (1̄30̄910824625276̄24145̄11̄61̄31̄) Different to ADW for n = 2

10125 3 (101) Falsely amphichiral

q−n− 17
2 (1̄00̄11̄01̄1̄1̄1̄1̄01̄) + q− 17

2 (1002212332222101) + qn− 11
2 (1̄00̄12̄1̄01̄2̄000̄1)

10129 4 (1̄1) + qn(1̄1) Same as 88, all n

q−n− 15
2 (13̄25̄809̄72̄52̄1̄1) + q− 15

2 (1̄44̄7̄18̄42223522126̄922̄1) + qn− 11
2 (106̄8920420152̄11̄41̄2) + q2n− 1

2 (22̄3̄40̄310̄1) + q3n+ 1
2 (1̄10̄211̄1)

10132 4 qn(1) + q2n(01) Same as 51, all n

qn+ 1
2 (1) + q2n− 5

2 (101̄11) + q3n− 3
2 (111̄02) + q4n− 1

2 (1000011001) + q5n+ 5
2 (1̄01̄1̄00̄1)

10137 5 (1̄) + qn(2̄1) + q2n(1̄) Same as 10155, n = 2

q−n− 3
2 (1̄) + q− 7

2 (101̄1̄01) + qn− 7
2 (1̄13̄54̄41̄2) + q2n− 1

2 (31̄6̄35̄21̄1) + q3n− 1
2 (1̄12̄52̄40̄2) + q4n+ 5

2 (21̄2̄21) + q5n+ 11
2 (1̄)

10155 3 qn(2̄11̄) Same as 10137, n = 2

qn− 11
2 (1̄02̄02̄52̄42̄3̄11̄1) + q2n− 11

2 (11̄12̄241̄554̄504̄11̄1) + q3n− 5
2 (1̄11̄1̄22̄2̄31̄3̄11̄1)

10156 4 qn(32̄1) Same as 816, all n

qn− 13
2 (1̄21̄525̄504̄302̄1) + q2n− 13

2 (12̄07̄68̄15014102̄750̄21) + q3n− 7
2 (1̄21̄739102̄84̄1̄21̄) + q4n+ 3

2 (1̄11̄201)
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The polynomial of a mirror image to a knot is obtained by substitutingq−1 for q in
the knot polynomial. Knots which are amphichiral have polynomials symmetric inq and
q−1. The {1}su(n)q polynomials for the knots 942, 1048, 1071, 1091, 10104, and 10125 are
symmetric inq and q−1, as shown in table 3, but these knots are not amphichiral. The
{2}su(n)q polynomial does correctly reflect the amphichirality/non-amphichirality of all the
knots having ten or fewer crossings.

Table 2 summarizes the differences between the{1}su(n)q and{2}su(n)q polynomials.
Table 3 gives the{1}su(n)q and {2}su(n)q polynomials for all knots mentioned in table 2
and also for 10100 and 10112. Full tables of {1}su(n)q and {2}su(n)q polynomials for
all knots of ten or fewer crossings are available from the authors (E-mail address:
P.Butler@Phys.Canterbury.AC.NZ).

7. Conclusions

Knot polynomials may be obtained from theR-matrices ofq-deformed algebras. The one-
variable polynomials based on the{1} representation ofsu(n)q are a special case of the two-
variable HOMFLY polynomial. For knots of ten or fewer crossings and withm > 2 the only
pairs of knots with the same{1}su(n)q polynomial are those pairs with the same HOMFLY
polynomial. Other pairs for the Jones polynomial, which is equivalent to the{1}su(2)q
polynomial, are distinguished for higher values ofn. These one-variable polynomials are
as effective at distinguishing knots of ten or fewer crossings as the two-variable HOMFLY
polynomial.

The N = 3 {2}su(n)q polynomials are calculated by recursion for all knots of ten or
fewer crossings. The recursion has been automated, with the algebraic package MAPLE
being used. We use a similar method to that of Guadagnini [19] to find two skein-
type relations, which together with the Alexander–Conway skein relation are sufficient to
determine polynomials for all knots with ten or fewer crossings. However, the properties of
R-matrices and coupling coefficients forq-deformed algebras are used rather than appealing
to conformal field theory.

Akutsu and Wadati [23] show that the{2}su(2)q polynomial distinguishes a pair of
knots with braid index 3 having the same Jones and HOMFLY polynomials. The{2}su(2)q
was thought to be more powerful than any of the{1}su(n)q polynomials. Extending
the calculation both to all the knots of ten or fewer crossings and to all{2}su(n)q
polynomials shows that all pairs for the HOMFLY polynomial of knots of ten or fewer
crossings are distinguished by the{2}su(n)q polynomial. However, four new pairs for the
{2}su(n)q polynomial have been found. The{2}su(n)q polynomials do correctly predict
non-amphichirality for all knots of ten or fewer crossings.

From this data set, it seems that the Jones polynomial or{1}su(2)q polynomial is
anomalous in the number of pairs obtained. For other values ofn or other representations
there are a similar number of pairs, far fewer than for the Jones polynomial. It seems
unlikely that the{3}su(n)q polynomial or higher representation polynomials would have
fewer pairs. The{1} and {2} polynomials together are sufficient to distinguish all knots of
ten or fewer crossings.
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